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Abstract

An analytical method for dynamic analysis of systems with viscoelastic dampers has been developed.
Some aspects concerning the critical damping of structure with elastically supported viscoelastic damper are
discussed. The considered system is governed by the third order differential equation. The one-sided
Green’s function for deterministic and stochastic cases is derived in closed analytical form. The free
vibration and the forced vibration due to half sine impulse loading have been considered. The analytical
solution is derived using Green’s function and the Laplace transform method. The numerical results are
obtained on the basis of MATHEMATICA system.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibrations of the structures play an increasing role in engineering planning due to the heavier
dynamic loads and due to increased environmental consciousness of people. For the analysis of
structure vibrations it is necessary to know which elements exist in the area of interest [1].
Viscoelastic dampers can effectively reduce response of the structure to dynamic loads. Using a
mathematical model of the structure with dampers one can analyze the damping effects of the
system. In the case that the effect of the damper support stiffness is not negligible, one obtains the
initial value problem for the third order ordinary differential equation (TODE). The purpose of
this paper is to derive and analyse the critical damping coefficients of the TODE. Next, the paper
deals with the case, that the damping coefficient is a random function of time variable. The
properties of the system are governed by the Green’s function. The paper discloses the influence of
the randomness of the damping coefficient on the shape of the one-sided Green’s function. The
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solution for the deterministic model with time harmonic, Heaviside and other forms of excitation
function, that cannot be produced in a real situation, can be found in the existing literature. The
response of the considered system due to more realistic excitation, i.e., short duration half sine
impulse loading is considered in this paper.

2. Problem formulation

Let the structural system be simplified as a mass m with the stiffness kf ; the stiffness and
damping coefficient of the viscoelastic dampers kd and cd ; respectively, and the stiffness of the
member supporting the viscoelastic damper kb (Fig. 1). The equation of motion for the structure
excited by an external force, f ðtÞ; can be derived from the following equations [2]:

m .x þ kf x þ PðtÞ ¼ f ðtÞ; ð1Þ

PðtÞ ¼ kbz; ð2Þ

PðtÞ ¼ kdðx � zÞ þ cdð ’x � ’zÞ; ð3Þ

where x and z denote the displacements, PðtÞ denotes the internal force. The over dot indicates the
differentiation with respect to time.
In engineering applications one has to take into account the significant uncertainty with respect

to the damping coefficient cd : In the stochastic approach the random damping coefficient is
incorporated into the analysis as a random function of time

cd ¼ cd0ð1þ eðt; gÞÞ; ð4Þ

where eðt; gÞ is the zero mean value dimensionless random function ð/eðt; gÞS ¼ 0Þ and g is the
elementary event in a complete probability space [3]. The brackets / �S in this paper denote an
ensemble average and for the sake of conciseness the probability variable g will be dropped. If the
size of randomness is relatively minor, the perturbation theory (small parameter approach) can be
an adequate procedure. According to Adomian’s remarks [4], in Section 4.2 no assumption
concerning the size of the randomness is necessary. If randomness is small, the Adomian’s
decomposition method leads to perturbation results. The wide class of the random function eðtÞ
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Fig. 1. Model of the analysed dynamic system.
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can be described, in the correlation theory, by the correlation function

Kðt; t1Þ ¼ s2d expð�bjt � t1jÞ
Xn�1
k¼0

GðnÞð2bjt � t1jÞ
n�1�k

ð2n � 2Þ!k!Gðn � kÞ
; ð5Þ

where sd is the standard deviation and b controls the correlation length. For n ¼ 1 one obtains the
exponential correlation function, which is commonly used in stochastic dynamics.
Eliminating PðtÞ and zðtÞ in Eqs. (1)–(3), leads to the equation of motion of the system as

x
y

þ
kb þ kd

cd0
.x þ

ðkb þ kf Þ
m

’x þ
ðkf kb þ kbkd þ kdkf Þ

mcd0
x ¼ F ðtÞ; ð6Þ

where

F ðtÞ ¼
1

m

ðkb þ kdÞ
cd0

f ðtÞ þ ’fðtÞ
� �

� x
y

þ
ðkb þ kf Þ

m
’x �

1

m
’f

� �
eðtÞ: ð7Þ

3. Free vibrations: deterministic approach

In the deterministic case ðeðtÞ ¼ 0Þ the equation of motion for free vibrations ð f ðtÞ ¼ 0Þ is
given by

x
y

þ
A

cd
.x þ

B

m
’x þ

C

mcd

x ¼ 0: ð8Þ

The characteristic equation associated with Eq. (8) can be written as

l3 þ
A

cd

l2 þ
B

m
lþ

C

mcd

¼ 0; ð9Þ

where

A ¼ kb þ kd ; B ¼ kb þ kf ; C ¼ kbkd þ kdkf þ kf kb: ð10Þ

Eq. (9) leads to discriminant of the form

D ¼ q2 � p3 ð11Þ

where

p ¼
A

cd

� �2

�
3B

m
; q ¼ �

A

cd

� �3

þ
9AB

2mcd

�
27C

2mcd

: ð12Þ

The damping coefficients satisfying equation

D ¼ 0 ð13Þ

are the critical damping coefficients. Substituting Eqs. (12) into Eq. (13) leads to

4B3c4d � mðA2B2 þ 18ABC � 27C2Þc2d þ 4m2A3C ¼ 0: ð14Þ

The conditions for existence and nonnegativity of the roots cd of Eq. (14) are

ðA2B2 þ 18ABC � C2Þ2 � 64A3B3CX0; ð15Þ
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A2B2 þ 18ABC � 27C2
X0: ð16Þ

Conditions (15) and (16) can be written as

ðAB � 9CÞ3ðAB � CÞX0; ð17Þ

ABðAB � 9CÞ þ 27CðAB � CÞX0 ð18Þ

Hence, the domain where conditions (17) and (18) are fulfilled is

AB � 9CX0 ð19Þ

which becomes

k2
b � 8ðkbkd þ kdkf þ kf kbÞX0: ð20Þ

If condition (20) is satisfied, the critical damping coefficients cd1 > 0 and cd2 > 0 exist and those
values can be obtained from Eq. (14).
To find the solution of Eq. (8), as a first step, one has to check if inequality (20) is fulfilled. The

next step is to solve Eq. (14) and find the critical damping coefficients cd1 and cd2: The general
solution of Eq. (8) can be written as

x ¼ C1j1ðtÞ þ C2j2ðtÞ þ C3j3ðtÞ; ð21Þ

where jiðtÞ are the fundamental solutions of Eq. (8) and Ci are arbitrary constants.
Depending on the values of parameters m; kf ; kb and kd ; there are three cases where cd can be

situated:

Case 1: 0ocdocd1:
Case 2: cd1ocdocd2:
Case 3: cd2ocd :

Assume here the following temporary initial conditions:

xð0Þ ¼ Y1; ’xð0Þ ¼ Y2; .xð0Þ ¼ Y3: ð22Þ

For cases 1 and 3 the characteristic equation (9) has one real root and two complex roots:

l1 ¼ lo0; l2;3 ¼ a8bi; ð23Þ

where ao0; bo0: The general solution of Eq. (8) in these cases is

x ¼ C1e
lt þ ðC2 cos bt þ C3 sin btÞeat ð24Þ

and taking into account the initial conditions (22), one obtains

C1 ¼
ða2 þ b2ÞY1 � 2aY2 þ Y3

ða � lÞ2 þ b2
; C2 ¼ �

lð2a � lÞY1 � 2aY2 þ Y3

ða � lÞ2 þ b2
;

C3 ¼
lða2 � b2 � alÞY1 þ ðb2 � a2 þ l2ÞY2 þ ða � lÞY3

ðða � lÞ2 þ b2Þb
: ð25Þ

For case 2, the characteristic equation (9) leads to three real roots:

l1 ¼ l1o0; l2 ¼ l2o0; l3 ¼ l3o0: ð26Þ
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The general solution of Eq. (7) in this case can be expressed as

x ¼ C1e
l1t þ C2e

l2t þ C3e
l3t ð27Þ

and taking into account the initial conditions (22) one obtains

C1 ¼
l2l3Y1 � ðl2 þ l3ÞY2 þ Y3

ðl3 � l1Þðl2 � l1Þ
; C2 ¼ �

l1l3Y1 � ðl1 þ l3ÞY2 þ Y3

ðl2 � l1Þðl3 � l2Þ
;

C3 ¼
l1l2Y1 � ðl1 þ l2ÞY2 þ Y3

ðl3 � l2Þðl3 � l1Þ
: ð28Þ

The initial conditions

Y1 ¼ Y2 ¼ 0; Y3 ¼ 1 ð29Þ

lead to one-sided Green’s function xðtÞ ¼ GðtÞ; which describes the properties of system (8). For
cases 1 and 3 one obtains

GðtÞ ¼
1

ða � lÞ2 þ b2
elt � eat cos bt þ

a � l

b
eat sin bt

� �
ð30Þ

and for case 2:

GðtÞ ¼
1

ðl3 � l1Þðl2 � l1Þ
el1t �

1

ðl2 � l1Þðl3 � l2Þ
el2t þ

1

ðl3 � l1Þðl3 � l2Þ
el3t: ð31Þ

The formulation here is aimed at constructing the general solution when the initial conditions
Y1;Y2;Y3 are viewed as integration constants.

4. Stochastic damping coefficient

In case the damping coefficient is a random function, the stochastic equation of motion of
the form

x
y

þ
A

cd0
.x þ

B

m
’x þ

C

mcd0
x ¼ � x

y

þ
B

m
’x

� �
eðtÞ ð32Þ

is considered. Eq. (32) can be written in the integral-differential form [4]

xðtÞ ¼ C1j1ðtÞ þ C2j2ðtÞ þ C3j3ðtÞ �
Z t

0

Gðt � tÞ x
y

ðtÞ þ
B

m
’xðtÞ

� �
eðtÞ dt; ð33Þ

where Gðt � tÞ; jiðtÞ and Ci; ði ¼ 1; 2; 3Þ; are given in Eqs. (24), (30) and (27), (31), respectively,
depending on cases 1,2 or 3. Taking into account Eq. (33) and the conditions (29), one obtains

x ¼ GðtÞ �
Z t

0

Gðt � tÞ x
y

ðtÞ þ
B

m
’xðtÞ

� �
eðtÞ dt: ð34Þ
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In further considerations the following expressions will be used:

’x ¼ ’GðtÞ �
Z t

0

’Gðt � tÞ x
y

ðtÞ þ
B

m
’xðtÞ

� �
eðtÞ dt; ð35Þ

x
y

¼ G
y

ðtÞ � x
y

ðtÞ þ
B

m
’xðtÞ

� �
eðtÞ �

Z t

0

G
y

ðt � tÞ x
y

ðtÞ þ
B

m
’xðtÞ

� �
eðtÞ dt: ð36Þ

4.1. First order smoothing approximation

Combining Eqs. (32)–(36), averaging and using the first order smoothing approximation [3]

/xðtÞeðtÞeðtÞSD/xðtÞSKðt � tÞ; ð37Þ

yields

ð1� s2Þ/ x
y

Sþ
A

cd0
/ .xSþ

B

m
ð1� s2dÞ/ ’xSþ

C

mcd0
/xS

¼
Z t

0

G
y

ðt � tÞ þ
B

m
’Gðt � tÞ

� �
/ x

y

ðtÞSþ
B

m
/ ’xðtÞS

� �
Kðt � tÞ dt ð38Þ

where the relations

Kðt � tÞ ¼ /eðtÞeðtÞS; Kð0Þ ¼ s2d : ð39Þ

are assumed.
To find the solution of Eq. (38) with the initial conditions (29), the Laplace transform can be

applied. Denoting the function in the transform domain by tilde and defining transform as

Lf/xðtÞSg ¼ *xðpÞ ¼
Z

N

0

e�pt/xðtÞS dt; ð40Þ

one obtains the solution of Eq. (38). The solution in the transform domain admits the following
form

*xðpÞ ¼
1� s2d � *cðpÞ

ð1� s2d � *cðpÞÞp3 þ
A

cd0
p2 þ

B

m
ð1� s2d � *cðpÞÞp þ

C

mcd0

; ð41Þ

where

*cðpÞ ¼ L G
y

ðtÞ þ
B

m
’GðtÞ

� �
KðtÞ

� �
: ð42Þ

Applying the inverse Laplace transform to Eq. (41) and taking into account the initial conditions
(29) results in the approximate average solution

/xðtÞS ¼ GsBðtÞ; ð43Þ

where GsBðtÞ ¼ L�1f *xðpÞg can be treated as the approximate Green’s function for the stochastic
equation (32).
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The explicit analytical expression for Eq. (41) can be obtained using the MATHEMATICA
system for symbolic computations. To calculate the explicit inverse Laplace transform (43), the
values of parameters should be introduced.

4.2. Adomian’s decomposition

According to Adomian’s decomposition procedure [4], the solution of Eq. (34), with the initial
conditions (29), is sought in the form

x ¼ x0ðtÞ þ x1ðtÞ þ x2ðtÞ þ?; ð44Þ

where x0ðtÞ ¼ GðtÞ is the deterministic function, while xnðtÞ; ðn ¼ 1; 2;yÞ; are random functions.
Substituting Eq. (44) into Eq. (34) and equating terms of the same order yields

x1ðtÞ ¼ �
Z t

0

Gðt � t1Þ x
y

0ðt1Þ þ
B

m
’x0ðt1Þ

� �
eðt1Þ dt1; ð45aÞ

xnðtÞ ¼ �
Z t

0

Gðt � t1Þ x
y

n�1ðt1Þ þ
B

m
’xn�1ðt1Þ

� �
eðt1Þ dt1; ðn ¼ 2; 3;yÞ: ð45bÞ

Each successive xnðtÞ depends on the preceding one. Eqs. (45) lead to

’x1ðtÞ ¼ �
Z t1

0

’Gðt1 � t2Þ G
y

ðt2Þ þ
B

m
’Gðt2Þ

� �
eðt2Þ dt2; ð46aÞ

x
y

1

ðt1Þ ¼ G
y

ðt1Þ þ
B

m
’Gðt1Þ

� �
eðt1Þ �

Z t1

0

G
y

ðt1 � t2Þ G
y

ðt2Þ þ
B

m
’Gðt2Þ

� �
eðt2Þdt2: ð46bÞ

Hence, one can obtain an explicit representation of the term xnðtÞ in the form of multiple integrals.
Substituting Eqs. (46) into (45b) (for n ¼ 2), and averaging yields

/x2ðtÞS ¼ s2d

Z t

0

Gðt � t1Þ G
y

ðt1Þ þ
B

m
’Gðt1Þ

� �
dt1

þ
Z t

0

Z t1

0

Gðt � t1Þ G
y

ðt1 � t2Þ þ
B

m
’Gðt1 � t2Þ

� �
G
y

ðt2Þ þ
B

m
’Gðt2Þ

� �
Kðt1 � t2Þdt2 dt1:

ð47Þ

Combining Eqs. (44), (46a) and (47) leads to the approximate average solution

/xðtÞS ¼ GsAðtÞ; ð48Þ

where GsA ¼ GðtÞ þ/x2ðtÞS: Expression (48) can be treated as the approximate Green’s function
for the stochastic equation (32).
A similar procedure as for the average solution can be used to obtain the second order

approximation of the variance function VxðtÞ ¼ /x2
1ðtÞSþ/x2

2ðtÞS�/x2ðtÞS2: To ascertain
validity of the second order approximate solution, one can resort to Monte Carlo simulation.
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5. Forced vibrations

The solution of the deterministic nonhomogeneous equation of motion (eðtÞ ¼ 0; hence
cd0 ¼ cd)

x
y

þ
A

cd
.x þ

B

m
’x þ

C

mcd

x ¼ flðtÞ; ð49Þ

where

flðtÞ ¼
1

m

A

cd

f ðtÞ þ ’fðtÞ
� �

ð50Þ

with the initial conditions (22) can be represented as

x ¼ C1j1ðtÞ þ C2j2ðtÞ þ C3j3ðtÞ þ
Z t

0

Gðt � tÞflðtÞ dt; ð51Þ

where jiðtÞ and Ci are given in Eqs. (24), (25) and (27), (28), respectively, depending on cases 1, 2
or 3.
A variety of viscous dampers, forming parts of a structural system, have been developed to

reduce building responses to dynamic loads such as earthquakes.
Consider the dynamic response of the system exposed to impulse loading of the form

f ðtÞ ¼
p0 sin

p
t0

t; 0ptpt0;

0; t > t0:

8<
: ð52Þ

Substituting Eq. (52) in Eq. (50) leads to

flðtÞ ¼
p0

m
ð1�Hðt � t0ÞÞ

A

cd

sin
pt

t0
þ

p
t0
cos

pt

t0

� �
; ð53Þ

where Hðt � t0Þ is the Heaviside function.
Once specific values of A;B;C;m; cd ; p0; t0 and the initial conditions Y1;Y2;Y3 are given, the

solution for the displacement (Eq. (51)), can be found as

x ¼ xinðtÞ þ xfoðtÞ: ð54Þ

The first term on the right hand side of Eq. (54), xinðtÞ; represents the response of the system to the
initial conditions. The remaining term, xfoðtÞ; is the response of the system due to the forcing
function. If the initial conditions Y1;Y2;Y3 are viewed as arbitrary constants, the term xinðtÞ
comprise the general solution of the homogeneous equation corresponding to Eq. (49). For the
initial conditions xð0Þ ¼ 0 and .xð0Þ ¼ 0; Eqs. (49) and (53) lead to:
for cases 1 and 3 one obtains

xinðtÞ ¼
1

ða � lÞ2 þ b2
�2aY2ðelt � eat cos btÞ þ

1

b
ðb2 � a2 þ l2ÞY2e

at sin bt

� �
; ð55Þ

xfoðtÞ ¼
p0

m
�
Z t

0

Gðt � tÞð1�Hðt� t0ÞÞ
A

cd

sin
pt
t0

þ
p
t0
cos

pt
t0

� �
dt; ð56Þ

where Gðt � tÞ is given in Eq. (30);
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for case 2

xinðtÞ ¼ �
ðl2 þ l3ÞY2

ðl2 � l1Þðl3 � l1Þ
el1t þ

ðl1 þ l3ÞY2

ðl3 � l2Þðl2 � l1Þ
el2t �

ðl1 þ l2ÞY2

ðl3 � l2Þðl3 � l1Þ
el3t ð57Þ

and the second term, xfoðtÞ; assumes the form of Eq. (56) with Gðt � tÞ given in Eq. (31).
The initial value problem described in Eqs. (49) and (53) can also be solved by the Laplace

transform method. The solution in the transform domain can be written as

*xðpÞ ¼
ðp þ A=cdÞY2

D3ðpÞ
þ

ðpp0=mt0Þðp þ A=cd Þð1þ e�t0pÞ

ðp2 þ ðp=t0Þ
2Þ � D3ðpÞ

; ð58Þ

where

D3ðtÞ ¼ p3 þ Ap2=cd þ Bp=m þ C=mcd : ð59Þ

For specified parameters, the inverse Laplace transform, L�1f *xðpÞg; can be calculated by the
MATHEMATICA system.

6. Numerical results and conclusions

In this paper the response of the system with elastically supported viscoelastic damper for free
vibration and for forced vibration in the form of half sine impulse is derived analytically. An exact
solution to this problem has been obtained by employing the Laplace transform method and
Green’s function method, respectively. The numerical calculations were carried out for structure
exposed to short duration impulse loading.
For numerical examples the following values of parameters have been specified: m ¼

106 kg; kb ¼ 2:0
 109 N=m; kd ¼ 3:0
 107 N=m; kf ¼ 2:0
 108 N=m: Condition (20) is
satisfied. Two positive critical damping coefficients bounding underdamped vibration and
overdamped vibration exist and are equal to cd1 ¼ 2:45305
 107 Ns=m and cd2 ¼ 2:46659

107 Ns=m:
To clarify the vibration characteristics of the system with various damping coefficients, time

histories of free vibration and forced vibration, respectively, have been computed for three cases.
Fig. 2 shows the displacement xðtÞ for cd ¼ 107 Ns=mAð0; cd1Þ; cd ¼ 2:46
 107 Ns=mAðcd1; cd2Þ

and cd ¼ 108 Ns=mAðcd2;NÞ; respectively.
Case 1 corresponds to underdamped vibration. The displacement in case 2 is overdamped and it

does not represent the vibrating motion. The range of overdamped vibration is finite, in contrast
to semi-infinite for second order differential equation. In case 3, a vibration component is
superposed on an overdamped case.
Figs. 3(a)–(c) show the effect of the standard deviation sd of the damping coefficient on the

Green’s function GsBðtÞ for cases 1, 2 and 3, respectively. In the real systems, the stochastic
inhomogeneity is often present and is likely to increase the damping characteristics in a significant
way. For comparison, the results are presented for the exponential correlation function for
b ¼ 1=s and sd ¼ 0 (solid line, deterministic case), sd ¼ 0:6 (dashed line) and sd ¼ 0:9 (dotted line).
Increasing the variance of damping coefficient leads to decreasing the maximum displacement
amplitude, and in case 2 it can lead to vibrating motion (see Fig. 3(b)).
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The forced displacement field, xðtÞ; due to half sine impulse loading of the amplitude p0 ¼
105 N; related to cases 1, 2 and 3, is shown in Figs. 4(a)–(c), respectively, for duration t0 ¼ 0:1 s
(dotted line), t0 ¼ 0:5 s (dashed line) and t0 ¼ 1 s (solid line). Here, in case 3, the value of

ARTICLE IN PRESS

Fig. 2. Free vibration for three cases: cd ¼ 107 Ns=m (solid line), cd ¼ 2:46
 107 Ns=m (dashed line), cd ¼ 108 Ns=m
(dotted line).

Fig. 3. Green’s function: (a) case 1, (b) case 2, (c) case 3, for standard deviation: sd ¼ 0 (solid line), sd ¼ 0:6 (dashed

line), sd ¼ 0:9 (dotted line).
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cd ¼ 5:0
 107 Ns=m is taken. To analyse the displacement field, xðtÞ; the initial displacement has
been specified to zero and the initial velocity Y2 ¼ �0:05 ms�1: It should be noted that the smaller
critical damping coefficient, cd1; is practically meaningful.
The proposed method is useful for dynamic analysis of structures and derived expressions can

serve as a benchmark solution. Various approximate numerical results, obtained on the basis of
finite element method, can be confronted with the derived analytical solution.
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Fig. 4. Displacement due to impulse loading: (a) case 1, (b) case 2, (c) case 3, for duration: t0 ¼ 0:1 s (dotted line),

t0 ¼ 0:5 s (dashed line), t0 ¼ 1 s (solid line).
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